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The analytical form of the magnetic pair distribution function (mPDF) is derived

for the first time by computing the Fourier transform of the neutron scattering

cross section from an arbitrary collection of magnetic moments. Similar to the

atomic pair distribution function applied to the study of atomic structure, the

mPDF reveals both short-range and long-range magnetic correlations directly in

real space. This function is experimentally accessible and yields magnetic

correlations even when they are only short-range ordered. The mPDF is

evaluated for various example cases to build an intuitive understanding of how

different patterns of magnetic correlations will appear in the mPDF.

1. Introduction

Emergent phenomena in complex materials represent one of

the most exciting and challenging fields of research in modern

condensed matter physics (Dagotto, 2005). Exotic behavior

such as high-temperature superconductivity (Dagotto, 1994;

Orenstein & Millis, 2000; Lee et al., 2006; Basov & Chubukov,

2011), colossal magnetoresistance (Millis, 1998; Dagotto et al.,

2001; Dagotto, 2005), multiferroism (Eerenstein et al., 2006;

Cheong & Mostovoy, 2007) and relaxor ferroelectricity (Cross,

1987; Bokov & Ye, 2006) exemplify the strong overlap of both

fundamental and applied interest in these types of systems.

As the body of research into these materials grows, it is

becoming increasingly evident that short-range structural

correlations and phase fluctuations on the nanoscale underlie

many of their fascinating properties (Imada et al., 1998;

Uehara et al., 1999; Fath et al., 1999; Chuang et al., 2001;

Dagotto et al., 2003; Billinge & Kanatzidis, 2004; Dagotto,

2005; Billinge & Levin, 2007). A crucial first step toward

understanding the behavior of these systems is to accurately

determine the detailed structure of their lattice, charge, orbital

and spin degrees of freedom (Millis, 1998). Unfortunately,

the very characteristic that makes these systems so interesting

– the presence of nanoscale correlations and fluctuations –

makes many conventional methods of structure determina-

tion, X-ray and neutron diffraction in particular, unreliable at

best and completely ineffectual at worst (Billinge & Levin,

2007). Traditional diffraction techniques are sensitive only to

the average long-range structure of a material, and are

therefore poorly suited to investigating the local short-range

order of interest in complex materials.

Over the past two decades, significant progress has been

made through the development of total scattering techniques

to determine local atomic structure (Egami & Billinge, 2013;

Tucker et al., 2001, 2007; Proffen et al., 2003; Juhás et al., 2006;

Young & Goodwin, 2011). Total scattering refers to the

detection and analysis of both Bragg scattering, corresponding

to long-range order, and diffuse scattering, arising from short-

range correlations deviating from the average structure. Pair

distribution function (PDF) analysis (Egami & Billinge, 2013)

has proven to be an especially effective tool for investigating

complex materials, and it is also quickly becoming indis-

pensable in the burgeoning fields of nanoscience and nano-

technology (Egami & Billinge, 2013; Billinge & Levin, 2007).

PDF analysis involves Fourier transforming the scattered

X-ray or neutron intensity from momentum space into real

space, yielding the real-space pair correlation function.

There are numerous benefits to this type of real-space

analysis. Most notably, short-range order, which gives rise to

diffuse features in momentum space that are not ideal for

fitting purposes, manifests itself through relatively sharp

features in the real-space correlation function, making quan-

titative fits much more feasible (Egami & Billinge, 2013).

Real-space signals are also often easier to interpret intuitively,

leading to deeper understanding and more effective model

proposal. For these reasons, PDF analysis has proven itself to

be a powerful probe of short-range atomic correlations in

complex materials. We hope that the mPDF (magnetic pair

distribution function) will, likewise, yield useful insights into

magnetic correlations in materials.

Along with local atomic structure, local magnetic structure

also plays a critical role in a host of condensed matter

phenomena, including such well known examples as spin–

stripe correlations in cuprate superconductors (Tranquada et

al., 1996, 1997), spin fluctuations in frustrated magnetic

systems such as the quantum spin liquid herbertsmithite (Han

et al., 2012) and spin order in diluted magnetic semiconductors

(Furdyna, 1988; Ohno, 1998; Zhao et al., 2013). Neutron
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scattering has long been one of the foremost experimental

techniques used to investigate magnetic structure. However,

the short-range nature of the magnetic correlations of interest

render conventional neutron diffraction less effective. Reverse

Monte Carlo techniques have been used successfully by

iteratively fitting randomly generated structural models in

momentum space (Keen & McGreevy, 1991; Paddison &

Goodwin, 2012), indicating that diffuse magnetic scattering

can be rich in information. However, as in the case of atomic

structure, there may be distinct advantages to performing the

analysis in real space after Fourier transforming the scattered

intensity, and we explore that here.

Up until now, real-space investigations of magnetic corre-

lations have been infrequent and less than optimally effective.

Wu et al., for instance, transformed the magnetic scattering

intensity into real space and made qualitative inferences

from it, but did not attempt to extract any quantitative

information or derive a functional form of the real-space

magnetic correlation function (Wu et al., 1987). Blech and

Averbach performed quantitative fits in real space by trans-

forming the experimental signal from momentum space to real

space, but the theoretical real-space signal was obtained by

first calculating the momentum-space signal and then

numerically transforming it into real space (Blech & Aver-

bach, 1964).

A more direct approach is to compute analytically the

Fourier transform of the magnetic scattering intensity to

obtain the real-space correlation function, which we call the

mPDF in analogy to the atomic PDF, and to fit this to the

transformed real-space data. In the following, we will derive

an expression for the mPDF and comment on its physical

meaning and utility.

2. Derivation of the mPDF equations

We begin with the result first obtained by Blech & Averbach

(1964) for the orientationally averaged magnetic scattering

cross section of neutrons from a system of identical localized

spins in the quasistatic approximation,
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where the subscripts i and j refer to individual magnetic

moments Si and Sj separated by a distance rij, Aij ¼ hS
y
i S

y
j i,

Bij ¼ 2hSx
i Sx

j i � hS
y
i S

y
j i, S is the spin quantum number in units

of h- , r0 ¼ ð�0=4�Þðe2=meÞ is the classical electron radius,

� ¼ 1:913 is the neutron magnetic moment in units of nuclear

magnetons, f is the magnetic form factor, N is the number of

spins in the system and � is the magnitude of the scattering

vector, with the symbol chosen so as to avoid confusion with

the magnetic scattering operator, conventionally denoted Q.

The angled brackets h� � �i denote a quantum mechanical

average. The first term results from self-scattering (i.e. i ¼ j)

and is equivalent to the scattering from a collection of

completely randomly oriented spins. The coordinate system

used to express Aij and Bij is locally defined for each spin pair

through

x̂x ¼
rj � ri

jrj � rij
and ŷy ¼

Si � x̂xðSi � x̂xÞ

jSi � x̂xðSi � x̂xÞj
;

as shown in Fig. 1.

We obtain the magnetic structure factor Sð�Þ by dividing out

the self-scattering contribution:
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Defining the reduced structure function as Fð�Þ ¼ �½Sð�Þ � 1�,

we have
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Expressing the scattered intensity in terms of this reduced

structure function effectively removes the contributions from

self-scattering. We now Fourier transform this quantity into

real space:

f ðrÞ ¼
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where �ðxÞ is the Heaviside step function. Intermediate steps

are carried out in Appendix A and accompanying supple-

mentary materials online.1

Equation (5) is the basic mPDF quantity of interest. Similar

to the atomic PDF for an elemental system (Farrow & Billinge,

2009) fatPDFðrÞ ¼ ð1=rNÞ
P

i6¼j �ðr� rijÞ, the mPDF involves

delta functions at spin-pair separation distances, but is
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Figure 1
Local coordinate system used in equation (1).

1 Supplementary material for this article is available from the IUCr electronic
archive (Reference: MQ5020).



modulated by the orientational term Aij, which is positive for

ferromagnetic-like correlations along the local y direction and

negative for antiferromagnetic-like correlations. Moreover,

the mPDF contains an additional term linear in r that is

entirely absent from the atomic PDF. These complications

arise from the fact that magnetic neutron scattering depends

on both the spatial and orientational correlations of magnetic

moments.

To get a sense of the meaning of this quantity, we integrate

rf ðrÞ over an annulus with inner and outer radii a and b,

respectively:

Zb

a
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where Nab is the number of spins in the annulus, the quantity

hcos �iab ¼ ð1=NÞ
P

ið1=NabÞ
P

j2S hcos �iji is the cosine of the

angle between spin i at the origin and spin j in the annulus

averaged first over all spins in the annulus and then over all

spins taken at the origin, S is the set of all spin pairs such that

a � rij � b, and S
0 is the set of all pairs with rij > b. From this

result, it is evident that the quantity rf ðrÞ is analogous to the

radial distribution function RðrÞ in the atomic PDF, but

modified by additional orientational terms. Interestingly, the

second term in the above result vanishes if the sum of all Bij in

any given shell of spins at the same radial distance from the

origin is zero (as is the case for cubic symmetry, for instance)

or in the limit rij !1.

Two challenges distinguish mPDF from atomic PDF

analysis. First, the magnetic form factor restricts magnetic

scattering to momentum transfers of less than approximately

8–10 Å�1 even in the most favorable circumstances. This limits

the maximum achievable real-space resolution significantly

more than in the case of atomic PDF, where the form factor is

less problematic for X-ray scattering and entirely absent for

nuclear neutron scattering. This limitation is partially miti-

gated by the fact that an understanding of magnetic structure

typically requires less real-space resolution than does atomic

structure, since there are generally only very few magnetic

moments per unit cell. Second, the somewhat more compli-

cated analytical form of the mPDF may appear to make it

rather less useful than the atomic PDF. Despite these diffi-

culties, mPDF analysis still has the potential to offer important

new insights into a variety of magnetic systems. The second

difficulty mentioned can easily be remedied by examining the

calculated mPDF for various systems as an intuition-building

exercise. In many cases, the mPDF simplifies considerably, and

in all cases it is rich with information. To illustrate this, we now

present the simulated mPDF from several simple spin

configurations.

3. Simulated mPDFs from simple systems

3.1. Single pair of spins

We first consider a single pair of ferromagnetically coupled

spins. The mPDF consists of a peak at the pair separation

distance and a linear baseline whose slope depends on the spin

orientation (Fig. 2). The positive sign of the peak indicates the

ferromagnetic alignment of the spins. To represent the effect

of thermal fluctuations, the sharp features of the delta and

Heaviside functions have been smoothed with Gaussian and

Fermi–Dirac functions, respectively. As seen in Fig. 2, the

baseline and peak height depend on the orientation of the

spins relative to the axis joining them, with rotational

symmetry about the axis being preserved. The peak height

depends on the components aligned perpendicular to the

connecting axis, causing the peak to vanish altogether when

the spins are aligned along the axis. In this simple case,

therefore, the mPDF is sensitive to the exact orientation of the

spins up to the axial rotational invariance. However, it will be

seen that this sensitivity is somewhat diminished with higher

symmetry and dimensionality. As an illustration of this, aver-

aging the mPDF from the ferromagnetic pair over all possible

orientations causes the baseline to vanish and reduces the

peak height to 2/3 the maximal value (broken line in Fig. 2).

Incidentally, this mPDF is what one would expect from a

collection of uncorrelated ferromagnetic dimers. For refer-

ence, we also display the analogous results for anti-

ferromagnetic spin pairs in Fig. 3.
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Figure 2
Calculated mPDFs from a ferromagnetically coupled pair of spins in
three different orientations, showing the sensitivity of the mPDF to the
exact spin orientation up to rotational invariance about the axis joining
the pair. The broken line in the top portion of the figure shows the result
when the average over all possible ferromagnetic orientations is
calculated.



3.2. One-dimensional antiferromagnetic chain

The mPDF from a one-dimensional antiferromagnetic chain

looks similar to the previous example, but with additional

peaks appearing at integral multiples of the pair separation

distance (Fig. 4). Moreover, the first peak is negative due to

the antiferromagnetic coupling of nearest neighbors, while the

second-nearest neighbor is positive and so on. The peak

heights diminish as 1=r and the successive baseline slopes

diminish as 1=r3. As before, the mPDF is sensitive to the spin

orientation relative to the chain axis, but is invariant under

rotations about this axis. When averaged over all possible

moment directions, the baseline again vanishes (broken line in

Fig. 4).

3.3. One-dimensional spin-density wave

A one-dimensional spin-density wave illustrates the intui-

tiveness of the mPDF. Aside from the 1=r envelope, the mPDF

assumes precisely the same form as the actual arrangement of

spins in real space (Fig. 5). The mPDF therefore provides at a

glance detailed information about the spin configuration of

the system. It is important to note that the changing peak

height in this example is not due to changes in the spin

orientations relative to the axis as in the previous examples,

rather it is due to the spatially modulating magnitude of the

magnetic moments. These two effects on the peak height can

be distinguished from each other by examining the behavior of

the baseline, although the distinctions are less apparent after

orientational averaging.

3.4. Simple ferromagnet and antiferromagnet

We now consider the mPDF of a cubic ferromagnet and

antiferromagnet (Fig. 6). Cubic symmetry renders the mPDF

insensitive to the absolute orientation of the magnetic axis and

also causes the term linear in r to vanish, so that the mPDF

consists only of peaks on a flat baseline. The relative peak

heights reflect the coordination numbers of pairs at various
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Figure 3
Calculated mPDFs from an antiferromagnetically coupled pair of spins,
analogous to the ferromagnetic results presented in Fig. 2.

Figure 4
Calculated mPDFs from an antiferromagnetically coupled one-dimen-
sional chain of spins in various orientations. The mPDF remains sensitive
to the exact spin orientation relative to the chain axis except in the fully
orientationally averaged case (broken gray line).

Figure 5
Calculated mPDF from a one-dimensional transverse spin-density wave,
which has the exact same form as the actual real-space spin configuration,
aside from the 1=r decay.



distances. When rf ðrÞ is plotted (broken line at the bottom of

Fig. 6), the second peak has twice the height of the first, since

there are 12 second-nearest neighbors and only six nearest

neighbors. Corresponding height ratios are seen in the third

peak (eight third-nearest neighbors), the fourth peak (six

fourth-nearest neighbors) and so on. However, at large r, the

coordination-shell spacings become closer together, causing

the peaks to overlap. This results in a background contribution

to the mPDF that increases with r at a rate determined by the

average spin density of the material, albeit partially counter-

acted by the 1=r envelope. The atomic PDF has an identical

average background term (Egami & Billinge, 2013; Farrow &

Billinge, 2009).

3.5. Spin ice

As a final example, we consider a ‘spin-ice’ material frozen

in one of its degenerate ground states. These systems consist of

a network of corner-sharing tetrahedra with a large spin

residing on each tetrahedral vertex (Balents, 2010). A strong

single-ion anisotropy forces the spins to act as Ising doublets

pointing either toward or away from the center of their

respective tetrahedra, resulting in severe geometrical frustra-

tion of the ferromagnetically coupled spins. This leads to

a macroscopically degenerate ground-state configuration

defined by the so-called ‘ice rules’ consisting of two spins

pointing in and two out on any given tetrahedron, named for

the similarity to the structure of water ice (Harris et al., 1997;

Bramwell & Gingras, 2001).

The nontrivial spin configuration generated by the ice rules

invites a more detailed analysis of the mPDF for this system

(Fig. 7). A cubic lattice parameter of 10 Å has been selected

for this example. The first peak, which arises from the six

nearest neighbors (NN, red in Fig. 7) lying on the vertices of

the two tetrahedra to which each spin belongs, is well defined

and strongly negative. This can be intuitively understood in

the following way. An arbitrary spin taken to be at the origin

(blue in Fig. 7) will be oriented into one of its tetrahedra (the

‘in-tet’) and out of the other (the ‘out-tet’). Of the three other

spins on the in-tet, exactly one will be pointing inward; like-

wise, exactly one spin will be directed away from the out-tet.

We will call these two spins the ‘partners’ of the spin at the

origin. Thus, the central spin always has two partners and four

‘anti-partners’. Recalling the local coordinate system intro-

duced in equation (1), one can easily verify that, along the y

direction, the partners are aligned and the anti-partners are

anti-aligned with the central spin. Since peak height in the

mPDF is determined by the y components of the spin pairs

[the Aij term in equation (5)], the four anti-partners outweigh

the two partners and give rise to the negative NN peak. The

mPDF immediately reveals that the ice rules combined with

the geometry yield a net anti-ferromagnetic-like NN correla-

tion in the locally defined y direction, despite the ferromag-

netic NN interaction. Normally, ferromagnetically coupled

spins would not be frustrated on a triangular or tetrahedral
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Figure 7
Calculated mPDF of the spin-ice ground-state configuration obeying the
‘two-in two-out’ ice rules. The inset shows one possible ground state, with
one spin arbitrarily taken to be at the origin (blue), and the first-, second-
and third-nearest neighbors shown in red, green and purple, respectively.
The red (green) lines with short (long) dashes show the O-P-A and
O-A-P (O-P-P and O-A-A) chains described in the body of the text.

Figure 6
Calculated mPDFs from a cubic structure with various antiferromagnetic
(top, middle) and ferromagnetic (bottom) spin configurations, showing
the rotational invariance of the mPDF resulting from cubic symmetry.
The bottom plot also displays the radial distribution function RðrÞ with
the broken line, illustrating the proportionality of peak height to
coordination number as described in the body of the text.



lattice, but the single-ion anisotropy in this system causes

frustration on the pyrochlore network.

The second peak in the mPDF corresponds to the 12 next-

nearest neighbors (NNNs, green in Fig. 7), two on each of the

tetrahedra adjoining the in- and out-tets of the central spin.

The NNN distance is nearly double the NN distance and the

coordination number is also doubled. As such, one might

expect the 1=r decay to be offset by the increase in coordi-

nation number, resulting in a second peak of approximately

the same magnitude as the first. This is clearly not the case; the

NNN peak is significantly smaller in magnitude, indicative of

decreased spin correlation at larger r. To understand the

negative sign of the peak, we consider all possible NNN

configurations. Each NN can be either a partner (P) or an anti-

partner (A) of the central spin, and each NNN can in turn be

either a partner or anti-partner of the NN. Therefore, the

three-atom chains from the central spin (O) to the NNNs can

be of the form O-P-P, O-P-A, O-A-P or O-A-A. It is not

difficult to see that the O-A-P and O-P-A configurations result

in positive correlations between the central spin and the NNN

(red lines with short dashes in Fig. 7), whereas the O-A-A and

O-P-P chains result in negative correlations (green lines with

long dashes in Fig. 7), all of equal magnitude. If we make the

simplifying assumption that the NNNs on different tetrahedra

are independent, then elementary counting arguments show

that 5/9 of the possible two-atom chains are O-A-A or O-P-P

and 4/9 are O-A-P or O-P-A, thus slightly favoring the nega-

tive correlation.

Peak magnitude continues to decrease rapidly with the third

and fourth peaks despite 12-fold coordination also found for

the third- (purple in Fig. 7) and fourth-nearest neighbors,

further illustrating the decrease in spin correlation. Both of

these peaks are positive, since the ice rules allow a slightly

greater number of configurations with aligned y components

than anti-aligned. Peaks at higher r are similarly damped while

oscillating between positive and negative until the mPDF is

essentially zero for r greater than several lattice parameters.

Despite the inherent randomness in this system resulting from

the frustration, the mPDF shows that correlations nonetheless

exist out to relatively high r due to the combinatorics of the

finite number of different paths to far neighbors from the

central spin. In this way, we see that the mPDF gives direct

access to details of the spin configuration and the finite

correlation length in the spin-ice ground state.

4. Orbital contributions and multiple magnetic species

The expression for the mPDF derived previously applies to

systems in which the magnetism arises solely from localized

spins of a single type of magnetic ion. Many systems of

interest, including spin liquids and spin ices, fall into this

category, but it is also useful to extend our results to systems

with multiple magnetic species and both spin and orbital

angular momentum contributions.

In the dipole approximation, i.e. when the mean radius of

the wavefunction of the unpaired electrons is much less

than ��1, the contributions from orbital angular momentum

can be included by replacing the magnetic form factor f ð�Þ
with 1

2 gf ð�Þ, where the Landé g factor is (Lovesey, 1984;

Squires, 1996)

g ¼ gS þ gL ¼
JðJ þ 1Þ � LðLþ 1Þ þ SðSþ 1Þ

JðJ þ 1Þ

þ
JðJ þ 1Þ þ LðLþ 1Þ � SðSþ 1Þ

2JðJ þ 1Þ
ð7Þ

¼ 1þ
JðJ þ 1Þ � LðLþ 1Þ þ SðSþ 1Þ

2JðJ þ 1Þ
ð8Þ

and the full form factor is

f ð�Þ ¼ J 0

gS

g
þ ðJ 0 þ J 2Þ

gL

g
; ð9Þ

with

J n ¼ 4�
R1
0

dr r2jnð�rÞj�ðrÞj2; ð10Þ

jn being a spherical Bessel function of order n and �ðrÞ the

radial wavefunction of the electrons. Allowing for different

values of these quantities for 	 different magnetic species, the

orientationally averaged differential scattering cross section
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For notational compactness, we define a quantity ‘ �
ð�r0=2Þgf ð�Þ½ð2=3ÞJðJ þ 1Þ�1=2. We also employ the Morning-

star–Warren approximation, in which the magnetic form

factors for each magnetic species are replaced by an average

magnetic form factor f ð�Þ ¼ ð1=N	Þ
P

	 c	f	ð�Þ, where c	 is the

fractional proportion of the 	th spin. In the X-ray scattering

version of the Morningstar–Warren approximation, it is

necessary to first rewrite the form factor as f ð�Þ ¼ f ð0Þ~ff ð�Þ,
where f ð0Þ is approximately equal to the atomic number of the

scattering atom and ~ff ð�Þ contains the � dependence of the

form factor, with a value of 1 at � ¼ 0. This is not necessary for

magnetic neutron scattering, since it is evident from the defi-

nitions above that f ð0Þ ¼ 1. In practice, empirically measured

magnetic form factors tabulated in International Tables of

Crystallography Volume C (Wilson, 1995) or other resources

can be used and appropriately weighted to obtain the average

magnetic form factor. With these simplifications, the scattering

cross section can be expressed as
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2

X
i6¼j

gigj

� Aij

sin �rij

�rij

þ Bij

sin �rij

ð�rijÞ
3 �

cos �rij

ð�rijÞ
2

" #( )
; ð14Þ

where

hg½JðJ þ 1Þ�1=2
i ¼

P
	

c	g	½J	ðJ	 þ 1Þ�1=2:

The reduced structure function and the Fourier transform are

Fð�Þ ¼
1

N

3

2hg½JðJ þ 1Þ�1=2
i

2

X
i6¼j

gigj

� Aij

sin �rij

rij

þ Bij

sin �rij

�2r3
ij

�
cos �rij

�r2
ij

 !" #
ð15Þ

and

f ðrÞ ¼
1

N

3

2hg½JðJ þ 1Þ�1=2
i

2

X
i6¼j

gigj

�
Aij

r
�ðr� rijÞ þ Bij

r

r3
ij

½1��ðr� rijÞ�

( )
; ð16Þ

respectively. The effect of multiple magnetic species with

orbital contributions is therefore to weight the contribution of

each pair by the Landé splitting factors. Interestingly, this

result reduces to equation (5) in the case of spin-only scat-

tering even for multiple spin species, as long as the replace-

ment

SðSþ 1Þ ! h½SðSþ 1Þ�1=2
i

2
¼ f

P
	

c	½S	ðS	 þ 1Þ�1=2
g

2

is made. This simplification arises from the fact that g is always

2 for spins, regardless of the value of the spin quantum number

S.

5. Measurements with polarized neutrons

The mPDF technique relies on the ability to accurately obtain

the magnetic neutron scattering cross section. This can present

a significant experimental challenge if unpolarized neutrons

are used, since it is a nontrivial task to separate the magnetic

from the nuclear scattering. For this reason, it can be highly

advantageous to use a polarized incident neutron beam and

analyze the polarization of the scattered neutrons, allowing

the unambiguous separation of magnetic, nuclear and spin-

incoherent cross sections by taking linear combinations of the

different scattering channels, i.e. spin-flip and non-spin-flip, for

various configurations of the incident polarization direction

and the scattering vector (Lovesey, 1984; Squires, 1996). Such

linear combinations must be carefully chosen so as to remove

nuclear-magnetic interference terms, leaving only the

magnetic contribution. Once the full magnetic scattering

signal has been isolated, the mPDF equations derived

previously may be applied without any modification, even

though equation (1) is based on the assumption of an unpo-

larized neutron beam. The cross section for unpolarized

neutrons is simply the sum of the spin-flip and non-spin-flip

scattering channels, so the full magnetic scattering obtained

from polarization analysis is precisely what would be obtained

from unpolarized neutrons if the magnetic scattering could be

unambiguously separated from the nuclear scattering.

Several experimental methods have been devised to obtain

information from polarized neutron scattering, ranging in

complexity from the simple uniaxial parallel–perpendicular

method to the highly sophisticated techniques of full vector

polarization analysis (Roessli & Böni, 2002). The advantages

of vector polarization analysis are generally lost on powder

samples, so it may be more suitable to use the simpler long-

itudinal polarization analysis techniques for the purposes of

mPDF. A particularly attractive choice is XYZ polarization

analysis (Schärpf & Capellmann, 1993), which produces the

correct linear combinations to recover the full magnetic

scattering signal and utilizes a large bank of detectors covering

a wide solid angle to make data collection more efficient

(Stewart et al., 2000, 2009; Schweika, 2010).

6. Summary

We have introduced mPDF analysis as a novel approach for

investigating short-range magnetic correlations, by Fourier

transforming the total magnetic scattering intensity into real

space. The mPDF equations derived in this paper form the

starting point for quantitative fitting of magnetic structural

models to experimentally obtained mPDF signals. Through

several examples from simple systems, we have shown the

intuitive nature of the mPDF, which will be highly useful in

understanding and modeling local magnetic structure. As with

atomic PDF analysis, we expect this method to have the largest

impact on systems exhibiting magnetic short-range order,

nanomagnets, molecular magnets and so on.

APPENDIX A
Derivation of the mPDF equations

In this Appendix, we provide the intermediate steps involved

in several of the equations in the preceding derivation of

the mPDF equations. Going from equations (4) to (5), we

have
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f ðrÞ ¼
2

�

Z1
0

d�Fð�Þ sin �r ð17Þ

¼
2

�

1

N

3

2SðSþ 1Þ

X
i6¼j

1

rij

�
Aij

Z1
0

d� sin �r sin �rij

þ
Bij

r2
ij

Z1
0

d�
sin �r sin �rij

�2
�

Bij

rij

Z1
0

d�
sin �r cos �rij

�

�

ð18Þ

¼
2

�

1

N

3

2SðSþ 1Þ

X
i6¼j

1

rij

�
Aij

�

2
�ðr� rijÞ

þ
Bij

r2
ij

�

4
ðrþ rij � jr� rijjÞ �

Bij

rij

�

4
2�ðr� rijÞ

�
ð19Þ

¼
1

N

3

2SðSþ 1Þ

X
i6¼j

1

rij

�
Aij�ðr� rijÞ

þ
1

2

Bij

r2
ij

ðrþ rij � jr� rijjÞ �
Bij

rij

�ðr� rijÞ

�
: ð20Þ

The integrals in the second equality are straightforward but

nontrivial, and are worked out explicitly in the online

supplementary material. For a single pair of spins,

fijðr< rijÞ ¼
1

N

3

2SðSþ 1Þ
Bij

r

r3
ij

; ð21Þ

fijðr ¼ rijÞ ¼
1

N

3

2SðSþ 1Þ

�
Aij

r
�ðr� rijÞ þ

Bij

2r2

�
ð22Þ

and

fijðr> rijÞ ¼ 0: ð23Þ

This function is therefore more concisely written as

f ðrÞ ¼
1

N

3

2SðSþ 1Þ

X
i6¼j

�
Aij

r
�ðr� rijÞ þ Bij

r

r3
ij

½1��ðr� rijÞ�

	
;

ð24Þ

which is equation (5). Here we have utilized the convention

for the Heaviside step function that �ð0Þ ¼ 1
2.

We now calculate the integral in equation (6):

Zb

a

dr rf ðrÞ ¼
1

N

3

2SðSþ 1Þ

�
X
i 6¼j

Zb

a

dr

�
Aij�ðr� rijÞ þ Bij

r2

r3
ij

½1��ðr� rijÞ�

	
ð25Þ

¼
1

N

3

2SðSþ 1Þ

X
i;j2S

Aij þ
1

N

3

2SðSþ 1Þ

�
X
i 6¼j

Bij

r3
ij

0 if rij < a
1
3 ðr

3
ij � a3Þ if a � rij � b

1
3 ðb

3 � a3Þ if rij > b

8><
>: ð26Þ

¼
1

N

3

2SðSþ 1Þ

(X
i;j2S

�
Aij þ

1

3
Bij

 
r3

ij � a3

r3
ij
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3

X
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Bij
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ð27Þ
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hSx
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1
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 !
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We have used the result that for identical spins, Si � Sj

¼ ŜS2 cos �ij, and the operator ŜS2 has the eigenvalue SðSþ 1Þ.

We have also recalled the fact that the local coordinate system

being utilized is defined such that Sz
i ¼ 0; which allows the

introduction of the dot product Si � Sj in the fifth equality.
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